Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Activity of Research Center - Toyohashi University of Technology: Center for Human-Robot Symbiosis Research
Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm
Tobias Rainer SchäfleMarcel MitschkeNaoki Uchiyama
Author information
JOURNAL OPEN ACCESS

2021 Volume 33 Issue 1 Pages 11-23

Details
Abstract

This paper presents new optimal offline approaches to solve the coverage path planning problem. A novel hybrid genetic algorithm (HGA), which uses, the turn-away starting point and backtracking spiral algorithms for performing local search, is proposed for grid-based environmental representations. The HGA algorithm is validated using the following three different fitness functions: the number of cell visits, traveling time, and a new energy fitness function based on experimentally acquired energy values of fundamental motions. Computational results show that compared to conventional methods, HGA improves paths up to 38.4%; moreover, HGAs have a consistent fitness for different starting positions in an environment. Furthermore, experimental results prove the validity of the fitness function.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top