Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Novel Technology of Autonomous Drone
Verification of Model Accuracy and Photo Shooting Efficiency of Large-Scale SfM for Flight Path Calculation
Sho YamauchiKeiji Suzuki
Author information
Keywords: drone, multicopter, UAV, SfM
JOURNAL OPEN ACCESS

2021 Volume 33 Issue 2 Pages 322-328

Details
Abstract

In drone photography of vast natural terrain, it is difficult to know in advance the exact location and shape of an object. In addition, there are many time and location constraints in such environments; therefore, it is desirable to capture images quickly by automatic flight. The authors had previously proposed a method to determine the safety of such an automatic flight photography plan in advance and capture photographs quickly. The method was designed to model an object from the safety zone using multiple drones and determine a safe path in advance. However, further improvement in the efficiency was necessary when photographing the object over a large area. In contrast, in this study, to improve the efficiency of the safe flight path determination method for large-scale subjects, we developed a new method to model each number of photographs using structure from motion (SfM) and verify the accuracy of the model obtained for each number of photographs in advance. In addition, by determining the appropriate number of shots based on the results obtained and reducing the loss of time and battery during shooting, we verified the extent to which the total flight time could be reduced for a flight path of shooting a large-scale object in the Esan Prefectural Natural Park. In the case of the Esan Prefectural Natural Park, we demonstrate that the difference in the small-object shooting time was not a problem, but the difference was significant for shooting large objects. The effectiveness of determining and applying, in advance, the number of shots that provides appropriate accuracy is demonstrated.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top