Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Science of Soft Robots
Echo State Network for Soft Actuator Control
Cedric CaremelMatthew IshigeTung D. TaYoshihiro Kawahara
Author information
JOURNAL OPEN ACCESS

2022 Volume 34 Issue 2 Pages 413-421

Details
Abstract

Conventional model theories are not suitable to control soft-bodied robots as deformable materials present rapidly changing behaviors. Neuromorphic electronics are now entering the field of robotics, demonstrating that a highly integrated device can mimic the fundamental properties of a sensory synaptic system, including learning and proprioception. This research work focuses on the physical implementation of a reservoir computing-based network to actuate a soft-bodied robot. More specifically, modeling the hysteresis of a shape memory alloy (SMA) using echo state networks (ESN) in real-world situations represents a novel approach to enable soft machines with task-learning. In this work, we show that not only does our ESN model enable our SMA-based robot with locomotion, but it also discovers a successful strategy to do so. Compared to standard control modeling, established either by theoretical frameworks or from experimental data, here, we gained knowledge a posteriori, guided by the physical interactions between the trained model and the controlled actuator, interactions from which striking patterns emerged, and informed us about what type of locomotion would work best for our robot.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top