Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Instantaneous Reaction and Vibration Suppression Using Two-Degree-of-Freedom Admittance Control with H Feedback Controller in Surgical Training Simulator with Chiseling Operation
Kentaro MasuyamaYoshiyuki NodaYasumi ItoYoshiyuki KagiyamaKoichiro Ueki
Author information
JOURNAL OPEN ACCESS

2022 Volume 34 Issue 4 Pages 844-856

Details
Abstract

Surgical training simulators with virtual reality have been developed to enable surgeons to efficiently acquire and improve their surgical skills. In hard tissue surgery, the surgeon uses a chisel and mallet to cut a bone or tooth with large and instantaneous forces. In the previous study by present authors, to represent the force sensation of the cutting operation in the virtual training simulator, we constructed the force display device using the ball-screw mechanism to obtain high stiffness and display the large force. Additionally, we applied the two-degrees-of-freedom (2DOF) admittance control to react instantaneously to the impact force by pounding with the mallet. The feedback controller of the 2DOF admittance control is required to increase the high-frequency gain for improving the responsiveness of the force display device. However, the vibrational mode of the force display device can be excited by increasing the controller gain. Therefore, this study develops the design approach of the feedback controller using the H control in the 2DOF admittance control system, which can be systematically constructed to reduce the vibrational mode and react instantaneously in the force display device. The efficacy of the proposed force display control system is verified through the virtual experience of the free movement and the hard contact operations.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top