Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Robotics for Medical Applications
Development of Intraoperative Plantar Pressure Measurement System Considering Weight Bearing Axis and Center of Pressure
Izumu HosoiTakumi MatsumotoSong Ho ChangQi AnIchiro SakumaEtsuko Kobayashi
Author information
JOURNAL OPEN ACCESS

2022 Volume 34 Issue 6 Pages 1318-1328

Details
Abstract

To prevent postoperative complications in corrective surgery for foot deformities such as hallux valgus and pes planus, it is critical to quantitatively predict the postoperative standing-position plantar pressure distribution during the operation. The authors have previously proposed an intraoperative plantar pressure measurement system (IPPM) that allows for the measurement of a supine patient’s plantar pressure distribution that is equivalent to that in the standing position. This system consists of an IPPM device comprising of a force plate and pressure distribution sensor, an optical three-dimensional position measurement device, a navigation monitor, and a PC. The plantar pressure distribution in the standing position is reproduced by navigating the operator, as he or she presses the IPPM device against the patient’s sole so that the weight-bearing axis (floor reaction force vector) and femoral head center are as close to each other as possible. However, in our previous study, the reproducibility of the standing position plantar pressure distribution was insufficient. Therefore, in the present study, we add a navigational function that can be used to bring the centers of pressure in the standing position and under measurement, as well as to correct the IPPM’s self-weight in the measured force. The improved device was used in an experiment with nine healthy subjects, and the similarity of the plantar pressure distribution in the standing and supine positions was evaluated using normalized cross-correlation, yielding an average of 0.90. Furthermore, in an evaluation experiment with ten orthopedic surgeons, it was observed that using the system reproduced the plantar pressure distribution significantly better than when the system was not used. These results indicate that the present system can predict the plantar pressure distribution in the standing position. We believe that this system can contribute to reducing complications after foot surgery.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top