Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Design of Swarm Intelligence Through Interdisciplinary Approach
Tension Control of a McKibben Pneumatic Actuator Using a Dynamic Quantizer
Yasuhiro SugimotoKeisuke NaniwaDaisuke NakanishiKoichi Osuka
Author information
JOURNAL OPEN ACCESS

2023 Volume 35 Issue 4 Pages 1038-1046

Details
Abstract

A McKibben-type pneumatic actuator (MPA) is a soft actuator that generates tension by inflating a rubber tube with compressed air. Electropneumatic regulators are typically employed to regulate air pressure in MPAs. However, they are normally large in size and expensive, which are significant obstacles to the autonomous decentralized control of many MPAs in achieving various robot motions. In this study, the exerted tension of the MPA was controlled using a small solenoid valve that could be opened and closed instead of an electropneumatic regulator. To achieve this tension control, we proposed the use of a dynamic quantizer that converts continuous pressure values into discrete pressure values and controls the solenoid valve based on the discretized pressure values. The proposed method was applied to feedforward and feedback control of the exerted MPA tension under isometric conditions. Experiments on an actual device with a small solenoid valve demonstrated the effectiveness of the proposed method based on a dynamic quantizer.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top