Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Design of Swarm Intelligence Through Interdisciplinary Approach
Generating Collective Behavior of a Multi-Legged Robotic Swarm Using Deep Reinforcement Learning
Daichi MorimotoYukiha IwamotoMotoaki HiragaKazuhiro Ohkura
Author information
JOURNAL OPEN ACCESS

2023 Volume 35 Issue 4 Pages 977-987

Details
Abstract

This paper presents a method of generating collective behavior of a multi-legged robotic swarm using deep reinforcement learning. Most studies in swarm robotics have used mobile robots driven by wheels. These robots can operate only on relatively flat surfaces. In this study, a multi-legged robotic swarm was employed to generate collective behavior not only on a flat field but also on rough terrain fields. However, designing a controller for a multi-legged robotic swarm becomes a challenging problem because it has a large number of actuators than wheeled-mobile robots. This paper applied deep reinforcement learning to designing a controller. The proximal policy optimization (PPO) algorithm was utilized to train the robot controller. The controller was trained through the task that required robots to walk and form a line. The results of computer simulations showed that the PPO led to the successful design of controllers for a multi-legged robotic swarm in flat and rough terrains.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top