Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Bio-MEMS
Difference in the Osteoblastic Calcium Signaling Response Between Compression and Stretching Mechanical Stimuli
Katsuya SatoTasuku NakaharaKazuyuki Minami
Author information
JOURNAL OPEN ACCESS

2023 Volume 35 Issue 5 Pages 1135-1142

Details
Abstract

In orthodontics, various forms of mechanical stimulation induce opposing bone metabolism mechanisms. Bone resorption and bone formation occur in areas of compressive and tensile force action, respectively. The mechanism that causes such a difference in bone metabolism is still unclear. In this study, we investigated the difference in the osteoblastic calcium signaling response between compression and stretching mechanical stimuli. We applied two types of mechanical stimuli to osteoblast-like MC3T3-E1 cells: first microneedle direct indentation onto the cell as compression stimuli, and second stretching stimuli by using originally developed cell stretching MEMS device. Cells were treated with thapsigargin and calcium-free medium to investigate the source of the calcium ion. The results demonstrated variations in the osteoblastic calcium signaling response between the compression and stretching stimuli. The magnitude of an increase in the intracellular calcium ion concentration is much higher in the compression stimuli-applied cell group. Treatment of calcium-free medium nearly suppressed the calcium signaling response to both types of mechanical stimulation. Thapsigargin treatment induced an increase in the magnitude of calcium signaling response to the compression stimuli, while suppressed the slow and sustained increase in the calcium ion concentration in the stretching stimuli-applied cell group. These findings demonstrate the difference in the characteristics of osteoblastic calcium signaling response between compression and stretching mechanical stimuli.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top