Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Autonomous Robotics Challenge
Self-Localization Using Trajectory Attractors in Outdoor Environments
Ken YamaneMitsunori Akutsu
Author information
JOURNAL OPEN ACCESS

2023 Volume 35 Issue 6 Pages 1435-1449

Details
Abstract

Self-localization in probabilistic robotics requires detailed, geographically consistent environmental maps, which increases the computational cost. In this study, we propose a simple self-localization method that does not require such maps. In the proposed method, the order structure, such as the mobile robot’s navigation route, is embedded as trajectory attractors in the state space of a nonmonotone neural network, and self-position estimation is performed by processing based on the autonomous dynamics of the network. From experiments, we demonstrated the basic performance of the proposed method, including robust self-localization in complex outdoor environments. Furthermore, self-localization is possible on multiple courses with overlapping paths by suitably varying the network dynamics based on environmental information. While issues remain, this study points to the great potential of neurodynamics-based robotic self-localization.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top