Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Development of Mobility Type Upper Limb Power Assist System —Mechanism and Design of Power Assist Device—
Hiroyuki InoueHiroshi Shimura
Author information
JOURNAL OPEN ACCESS

2023 Volume 35 Issue 6 Pages 1629-1637

Details
Abstract

In fruit cultivation, viticulture requires the longest working hours in extended arm postures, much of which is carried out in standing postures to accumulate fatigue on arms, shoulders, and legs: a tough working environment. In this study, we propose a power assist system to assist its users in their extended arm work while they move in vineyards. The proposed system largely consists of a mobile robot, a power assist device for work, and a control system. The mobile robot is structured with a tracked vehicle for rough terrain arranged on its left and right sides so that the users can sit between the two vehicles and be assisted by the power assist device for work installed on it. The power assist device for work with a single linear actuator utilizing a linkage mechanism has the function to retain users’ hand attitude angles while assisting the flexion and extension movements of their shoulder, elbow, and carpometacarpal joints. Then, we verify by simulations the effects that the arrangement and lengths of links will have on the carpometacarpal joints’ trajectories as well as on the hand attitude angles. Finally, in order to check the effectiveness of the proposed power assist device for work, we conducted the evaluation experiments for assumed grape-harvesting work and gibberellin treatments. As a result, we proved its work assisting effects from the muscle activity states as well as its applicability to other kinds of work by altering its linkage structure and hand support part.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top