Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Advanced Robotic Technology and System for DX in Construction Industry
Visual Presentation Interface to Reduce Effect of Machine Switching for Teleoperated Hydraulic Excavators
Masaki NagaiJunya MasunagaMasaru ItoChiaki RaimaSeiji SaikiYoichiro YamazakiYuichi Kurita
Author information
JOURNAL OPEN ACCESS

2024 Volume 36 Issue 2 Pages 309-319

Details
Abstract

In the future, a situation in which operators switch between different machine classes in teleoperated hydraulic excavator is envisioned. In such a case, because the classes have different dynamic characteristics, the operator is expected to acquire an internal model for each class and switch models each time the operator switches between machines. However, in the case of teleoperated hydraulic excavator, the operator cannot obtain information such as the size and dynamic characteristics of the machine to be switched to; thus, the operator may not be able to switch internal models properly, which may affect the operation efficiency. Therefore, this study proposes a method in which images and videos are used to present the dynamic characteristics of the next machine to be operated during machine changeover in teleoperated hydraulic excavator. To verify the effectiveness of the proposed method, a simulator that imitates teleoperated hydraulic excavator was built and tested on test subjects. The swing operation time significantly increased when the machine was switched without presentation, compared with the case without switching. Meanwhile, the proposed method did not increase the swing operation time associated with machine switching, suggesting its effectiveness. The video presentation method was more effective than the image presentation method for suppressing the increase in swing operation time, indicating that the operator can immediately switch to an appropriate internal model with the presentation of the dynamic characteristics of the machine in advance using video.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top