Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Cam-Like Mechanism in Intertarsal Joints of Ratites and its Design Framework
Kazuki ItoSayaka HidaTetsuya KinugasaKentaro ChibaYu OkudaMiwa IchikawaTsukasa OkoshiRyuji TakasakiRyota HayashiKoji YoshidaKoichi Osuka
Author information
JOURNAL OPEN ACCESS

2024 Volume 36 Issue 2 Pages 406-414

Details
Abstract

In this study, the cam-like passive mechanism, known as the engage–disengage mechanism (EDM) of the intertarsal joint of ratites, and its design principles are investigated. This mechanism operates through the interplay of a muscle and three ligaments located on the medial and lateral sides of the intertarsal joint and the articular surface morphology of the tibiotarsus. The interplay of the musculoskeletal ligamentous elements creates two stable equilibrium points when they are almost fully extended and flexed. To elucidate the EDM in the intertarsal joints of ratites, we dissected the hindlimb of an emu (Dromaius novaehollandiae) and examined anatomical features around the joint. Subsequently, we replicated the intertarsal joint of ratites using a physical model. This model consists of three-dimensional-printed ostrich bones, coil springs, and nylon strings simulating the muscle and ligaments. This model successfully replicated the EDM and facilitated the analysis of the interplay of musculoskeletal ligamentous elements. We demonstrated that the medial ligaments and the morphology of the tibiotarsal articular surface play significant roles in facilitating the execution of EDM. Furthermore, we observed that the articular surface morphology resembles a well-known cam system in engineering and is responsible for the EDM.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top