Journal of Radiation Research
Online ISSN : 1349-9157
Print ISSN : 0449-3060
Regular Papers
Effects of 2.45 GHz Electromagnetic Fields with a Wide Range of SARs on Bacterial and HPRT Gene Mutations
Shin KOYAMAYoshio TAKASHIMATomonori SAKURAIYukihisa SUZUKIMasao TAKIJunji MIYAKOSHI
Author information
JOURNAL FREE ACCESS

2007 Volume 48 Issue 1 Pages 69-75

Details
Abstract

Present day use of mobile phones is ubiquitous. This causes some concern for human health due to exposure to high-frequency electromagnetic fields (HFEMF) from mobile phones. Consequently, we have examined the effects of 2.45 GHz electromagnetic fields on bacterial mutations and the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene mutations. Using the Ames test, bacteria were exposed to HFEMF for 30 min at specific absorption rates (SARs) from 5 to 200 W/kg. In all strains, there was no significant difference in the frequency of revertant colonies between sham exposure and HFEMF-exposed groups. In examination of mutations of the HPRT gene, Chinese hamster ovary (CHO)-K1 cells were exposed to HFEMF for 2 h at SARs from 5 to 200 W/kg. We detected a combination effect of simultaneous exposure to HFEMF and bleomycin at the respective SARs. A statistically significant difference was observed between the cells exposed to HFEMF at the SAR of 200 W/kg. Cells treated with the combination of HFEMF at SARs from 50 to 200 W/kg and bleomycin exhibited increased HPRT mutations. As the exposure to HFEMF induced an increase in temperature, these increases of mutation frequency may be a result of activation of bleomycin by heat. We consider that the increase of mutation frequency may be due to a thermal effect.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2007 by Journal of Radiation Research Editorial Committee
Previous article Next article
feedback
Top