The Japan Radiation Research Society Annual Meeting Abstracts
The 52nd Annual Meeting of the Japan Radiation Research Society
Session ID : W5-1
Conference information

DNA repair diseases for UV-induced DNA damage and their molecular pathogenesis
How do mutations in the XPD gene result in different skin cancer susceptibilities in patients with xeroderma pigmentosum or trichothiodystrophy ?
*Toshio MORI
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract

To get a clue to understand how mutations in the XPD gene result in different skin cancer susceptibilities in patients with xeroderma pigmentosum (XP) or trichothiodystrophy (TTD), a thorough understanding of their nucleotide excision repair (NER) defects is essential. Here, we extensively characterize the possible causes of NER defects in XP-D and in TTD fibroblasts. The 3 XP-D cell strains examined were similarly deficient in repairing UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs) from genomic DNA. The severity of NER defects correlated with their UV sensitivities. Possible alterations of TFIIH (which consists of 10 subunits including XPD) were then examined. All XP-D cell strains were normal in their concentrations of TFIIH, and displayed normal abilities to recruit TFIIH to sites of UV-induced DNA damage. However, replication protein A (RPA; single-stranded DNA binding protein) accumulation at DNA damage sites, which probably reflects the in vivo XPD helicase activity of TFIIH, is similarly impaired in all XP-D cell strains. Meanwhile, all 3 TTD cell strains had ∼50% decreases in cellular TFIIH content. Importantly, 2 of the 3 TTD cell strains, which carry the major XPD mutations found in TTD patients, showed defective recruitment of TFIIH to DNA damage sites. Moreover, RPA accumulation at damage sites was impaired in all TTD cell strains to different degrees, which correlated with the severity of their NER defects. These results demonstrate that XP-D and TTD cells are both deficient in the repair of CPDs and 6-4PPs, but TTD cells have more multiple causes for their NER defects than do XP-D cells. Since TFIIH is a repair/transcription factor, TTD-specific alterations of TFIIH possibly result in transcriptional defects, which might be implication for the lack of increased incidence of skin cancers in TTD patients.

Content from these authors
© 2009 The Japan Radiation Research Society
Previous article Next article
feedback
Top