Abstract
Closed-loop control is vital for an application of HCCI engines in passenger cars. This paper introduces a simplified control-oriented model for control of combustion phasing and IMEP of a Blowdown Supercharge Engine (BDSC). Despite the complexity of this particular engine, the model has been found to match not only the steady state values in high load HCCI, but also to reproduce the transients. This model takes advantage of the knowledge of non-dynamic processes within the engine that can be derived from steady state values, while the main dynamics are achieved by dynamically modelling of cyclic coupling via in-cylinder temperature alone and mean exhaust pressure dynamics. Furthermore, a simplified combustion model has been found to be accurate enough for the region of interest. An automated tuning scheme helps to match the model to the respective target values. With this model and the tuning scheme, the model can be easily tuned for every possible case. A model-based MIMO state controller, based on Sliding-Mode Control theory has been designed and tested on a detailed 1-D simulation code.