Abstract
In this study, the compact PAH growth model previously presented by authors was combined with a reduced gas-phase reaction model for toluene reference fuel and ethanol proposed by Sakai and Miyoshi. The present model, PS3SMr2, consists of 107 chemical species and 473 elemental reactions. This model well reproduces the ignition delay time and the laminar flame speed of iso-octane, n-heptane, toluene and ethanol air mixtures as well as the base model. Verifications of soot formation characteristics were first performed for the experimental results for a gasoline surrogate fuel measured by shock tube. As a result, it was shown that the model can well reproduce sooting characteristics regardless of the pressure and the amount of oxygen. The ethanol blend effect to the test fuel on the soot emissions was verified on the simulated in-cylinder pool combustion experiments for iso-octane/toluene/ethanol blended fuels. As a result, we showed that the present model shows a good reproducibility of the qualitative trend of soot emissions with the change in the equivalence ratio for a gasoline surrogate fuel as well as existing model results. As for the effect of ethanol blend, it was shown that the experiments were well reproduced when toluene was replaced and that there was room for improvement when iso-octane was substituted.