Transactions of Society of Automotive Engineers of Japan
Online ISSN : 1883-0811
Print ISSN : 0287-8321
ISSN-L : 0287-8321
Research Paper
Injury Severity Prediction based on Select Vehicle Category of Real-World Accidents Data
Susumu EjimaTsukasa GotoPeng ZhangKristen CunninghamStewart Wang
Author information
JOURNAL FREE ACCESS

2022 Volume 53 Issue 6 Pages 1233-1238

Details
Abstract
An injury severity prediction algorithm for AACN was developed using a logistic regression model to predict the probability of sustaining an Injury Severity Score (ISS) 15+ injury. National Automotive Sampling System Crashworthiness Data System (NASS-CDS: 1999-2015) and model year 2000 or later were filtered for new case selection criteria, based on vehicle body type, to match SUBARU vehicle category. Moreover, presence of the right-front passenger and its interaction with crash direction were considered, which affected risk prediction significantly especially in the side-impact crashes. Variable selection techniques were used to construct the final ISP algorithm with relevant features. In this paper, we presented results of injury prediction algorithms, which do consider the effect of a right-front passenger were proposed. The area under the receiver operator characteristic curve (AUCs) was used as the metric to evaluate model performances, AUC was 0.862 with the model for cross-validation. Delta-V, seat belt use, and crash direction were important predictors of serious injury, and moreover, the presence of right-front passenger was a significant injury risk modifier, especially for side impact crashes.
Content from these authors
© 2022 Society of Automotive Engineers of Japan, Inc.
Previous article Next article
feedback
Top