Abstract
Dye-Sensitized Solar Cell (DSC) is highly focused by many researchers because DSC has good merits those are flexible and colorful. However, efficiency of DSC is low. Many researches on chemical characteristics and shape of titania and dye to improve efficiency are carried out. We applied electrostatic inkjet technology for patterning titania layer of DSC because fabrication process should be developed to contribute to high efficiency. New machine that can print titania is essential to fabricate DSC on various surface of flexible electronics. The optimized thickness of titania layer is changed when the titania and dye are changed of type. Traditionally, doctor blade method and screen print method has been used to fabricate titania layer. However, these methods are not suitable to optimize thickness of titania layer. In this paper, we developed the machine to print titania layer. We demonstrated that thickness of titania layer depends on printing time and efficiency is changed when thickness of titania layer is changed.