Abstract
We propose a new method of multi-scale analysis for plate-like devices such as a flat plate cell of solid oxide fuel cell (SOFC), which is classified into a composite plate composed of in-plane periodic structures. To characterize the macroscopic nonlinear mechanical behavior of the in-plane periodic structure, the method of numerical plate testing is employed. Since the obtained relationships between macroscopic generalized strains and stress cannot be represented by an equivalent homogeneous plate with a single material, we introduce a surrogate model composed of homogeneous layers that is expected to exhibit the same macroscopic responses. After the material parameters of these layers are identified, the macroscopic analysis becomes possible by use of a laminated structure with continuum solid shell elements available in a general-purpose finite element program. Representative numerical examples are presented to demonstrate the capability of the proposed multi-scale analysis method.