Abstract
Charcoal produced from excess sludge appeared to be useful for removing SMP (soluble microbial products) in MBR (membrane bioreactors) and therefore for reducing membrane fouling. Batch experiments and long-term MBR experiments were performed by using charcoal made of actual excess sludge. In the batch experiments, SMP was removed effectively through charcoal addition. This approach proved especially effective for the removal of carbohydrate. Charcoal would serve as an absorbent and coagulant in SMP removal. High BOD (biochemical oxygen demand) removal efficiencies produced no negative effects on biological activity in the reactors during the long-term MBR experiments involving charcoal addition. The decrease of humic substances and COD (chemical oxygen demand) through charcoal addition suggested that this approach effectively enhanced the performance of activated sludge treatment. A charcoal addition of more than 0.1% in long-term MBR experiments effectively decreased the membrane fouling frequency. The use of charcoal therefore served to mitigate membrane fouling. A decrease in carbohydrate, corresponding to the increase in the mean fouling period, suggested that a charcoal addition of more than 0.1% effectively removed SMP, especially carbohydrate. A charcoal cyclic reuse system is also proposed. This system would involve charcoal production and charcoal addition to MBR.