Abstract
The authors investigated the possibility to reduce aeration time in one of the cycles of sequencing batch activated sludge reactors. It is known that there are microorganisms in activated sludge which can store organic materials temporarily in such forms as polyhydroxyalkanoate (PHA). It was expected that removal of organic materials in the cycle with reduced aeration was supplemented by the microbial activities to store organic materials temporarily. The authors operated sequencing batch reactors with 6 cycles/day with synthetic wastewater, and reduced aeration in one of the cycles. Short-term experiments were conducted to see the effects of aeration reduction for one time, and long-term experiments were conducted to see the effect of long term implementation of operation with aeration reduction. In both experiments, removal of DOC was greater than 92%, and no significant adverse effect was observed. The more aeration was reduced, the more PHA was carried over to the following cycles. It was estimated that about 17% to 50 % of PHA was carried over to the cycles following the cycles in which aeration was reduced. The operation with one-cycle reduced aeration was successfully implemented in the experiments. There is a big room to explore wastewater treatment technologies in the direction to flexibly control energy consumption.