Abstract
In this paper are investigated the net radiation (Rn) and the potential glacier melt discharge trends in a glacier in the tropical Andes, for the assessment of climate change impacts on the water resources availability in remote regions. It is assessed the applicability of remote sensing techniques, through the performance evaluation of the Surface and Energy Balance algorithm (SEBAL). For the calibration it is used ground data observed on the ablation surface of the Zongo glacier in Bolivia. The potential climate change impacts quantified are on the glacier melt discharge. The inferences are calibrated in the period 2004-2007. Results show that the SEBAL performance is adequate from an engineering perspective (Root Mean Square Error for albedo estimations are 0.15, in average). Climate change impacts for the period 1986-2005 are an increase of 42% in the Rn, and the loss in the glacier ablation area of 37% (both in reference to 1986). The melt from the studied glacier in the period 2004-2007 is estimated to produce a maximum potential energy of 3.1 [MW h] in average per day (dry season), which in the practice can be used to quantify the potential impacts of the climate change in partially glacierized catchments.