2023 Volume 79 Issue 15 Article ID: 22-15026
Thanks to the development of additive manufacturing technology, it is becoming possible to produce materials with desired mechanical properties defined by their periodic microstructures. To design optimal microstructures, multi-scale topology optimization has been paid attention to in many engineering fields. However, its high computational cost prevents practical use, such as high-resolution 3D analysis for precision modeling and non-linear analysis assuming actual materials. In this study, to solve this problem, we focus on the homogenization approach using fast Fourier transform and develop a new optimization method with fast computing speed and low memory requirement. By performing stiffness maximization analyses with linear elastic materials, we demonstrate the validity and efficiency of the proposed method.