Abstract
Currently, very few studies have been published that aim to examine the seismic deformation performance of a steel-concrete sandwich member integrating shear reinforcing steel plates which, with no displacement stop, are placed perpendicular to the member's axis. Furthermore, as regards the member composed of steel elements connected with interlocking joints, there have been no studies that quantitatively evaluate bending deformation performance under axial forces. In order to investigate this problem, we conducted a cyclic loading test of a full-scale specimen, through which we confirmed that localized cracks develop in the concrete, and using a non-linear finite element method, clarified a mechanism in which bending deformation progresses along with opening of localized cracks. At the same time, we proposed a model able to evaluate the amount of deformation in a simple quantitative way by accumulation of rotational deformations of blocks sandwiched between shear reinforcing steel plates. The validity of this model was demonstrated with a loading test and a finite element analysis.