Abstract
To predict the macroscopic compressive strengths of hardened cement paste, a digital-image-based finite element procedure for damage evolution due to local tension is developed and its applicability from practical viewpoint is studied through numerical experiments. In the procedure, microscopic three-dimensional geometries of hardened cement paste are assumed to be periodic and each phase is randomly generated by using auto-correlation function evaluated from a two-dimensional SEM image of specimen. Nonlocal isotropic damage model is employed to represented crack evolutions in the geometries. Predicted macroscopic uni-axial compressive strengths are qualitatively consistent with experimental results in terms of water-cement ratio and material age.