Journal of System Design and Dynamics
Online ISSN : 1881-3046
ISSN-L : 1881-3046
Papers
Performance Analysis of the Flapping Wing Propulsion Based on a New Experimentally Validated Aeroelastic Model
Seid H. POURTAKDOUSTSaeed Karimain ALIABADI
Author information
JOURNAL FREE ACCESS

2012 Volume 6 Issue 1 Pages 45-60

Details
Abstract

Flapping micro air vehicle (FMAV) is considered to exhibit much better performance at low speeds and small sizes compared to fixed-wing MAVs. To maximize the potential and capabilities of FMAVs also to produce adequate design implications, a new aeroelastic model of a typical flexible FMAV is being developed utilizing Euler-Bernoulli torsion beam and quasi steady aerodynamic model. The new model accounts for all natural existing complex interactions between the mass, inertia, elastic properties, aerodynamic loading, flapping amplitude and frequency of the FMAV as well as the effects of several geometric and design parameters. To validate the proposed theoretical model, a typical FMAV as well as instrumented test stand for the online measurement of forces, flapping angle and power consumption have been constructed. The experimental results are initially utilized to validate the flight dynamic model, and several appropriate conclusions are drawn. The model is subsequently used to demonstrate the flapping propulsion characteristics of the FMAV via simulation. Using dimensionless parameters, a set of new generalized curves have been deduced. The results indicate that by proper adjustment of the wing stiffness parameter as a function of the reduced frequency, the FMAV will attain its optimum propulsive efficiency. This fact raises additional new ideas for further research in this area by utilizing intelligent variable stiffness materials and/or or active morphing technology for the sustained, high-performance flight of FMAVs. The generalized model can also be used to conduct a performance and stability analysis of FMAVs and to design and optimize flapping-wing structures.

Content from these authors
© 2012 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top