Japan Journal of Food Engineering
Online ISSN : 1884-5924
Print ISSN : 1345-7942
ISSN-L : 1345-7942
Review
Nano-Emulsions; Emulsification Using Low Energy Methods
Shoichi GOHTANIWaraporn PRASERT
Author information
JOURNAL FREE ACCESS

2014 Volume 15 Issue 3 Pages 119-130

Details
Abstract
Nano-emulsions are emulsions with droplet sizes from 20 nm up to 200-500 nm, thermodynamically unstable, and appear transparent or translucent to the naked eye. Nano-emulsions are very useful in many industries; such as food, pharmaceutical, cosmetic, and chemical. Forming nano-emulsions using a method that requires energy input from a mechanical device is known as a ‘high-energy method’, while a method using chemical energy stored in the components is referred to as a ‘low- energy method’. The low-energy method can be classified into three categories: the Phase Inversion Temperature method, Phase Inversion Composition method or Emulsion Inversion Point method and the Spontaneous Emulsification method. To study nano-emulsification using the low-energy methods, phase diagrams are used to determine the phase behavior of the components and specify the temperature and concentrations at which various structures exist at equilibrium with desired properties. Most research focuses on droplet size and polydispersibility of nano-emulsions, because these properties influence physicochemical properties, appearance and stability of nano-emulsions. There have been many studies on the effect of composition and the major determining factors in the emulsification process on droplet size and polydispersibility of nano-emulsions such as surfactant type, concentration, location, oil type, surfactant-to-oil ratio, salt, stirring speed, and temperature.
Content from these authors
© 2014 Japan Society for Food Engineering
Next article
feedback
Top