Journal of Structural and Functional Genomics
Online ISSN : 1345-711X
ISSN-L : 1345-711X
Characterization and Prediction of Linker Sequences of Multi-domain Proteins by a Neural Network
Satoshi MiyazakiYutaka KurodaShigeyuki Yokoyama
Author information
JOURNAL FREE ACCESS

2001 Volume 2-pre Issue 1 Pages L105-L148

Details
Abstract
In this paper, we describe a neural network analysis of sequences connecting two protein domains (domain linkers). The neural network was trained to distinguish between domain linker sequences and non-linker sequences, using a SCOP-defined domain library. The analysis indicated that a significant difference existed between domain linkers and non-linker regions, including intra-domain loop regions. Moreover, the resulting Hinton diagram showed a position-dependent amino acid preference of the domain linker sequences, and implied their non-random nature. We then applied the neural network to predict domain linkers in multi-domain protein sequences. As the result of a Jack-knife test, 58 % of the predicted regions matched actual linker regions (specificity), and 36 % of the SCOP-derived domain linkers were predicted (sensitivity). This prediction efficiency is superior to simpler methods derived from secondary structure prediction that assume that long loop regions are putative domain linkers. Altogether, these results suggest that domain linkers possess local characteristics different from those of loop regions.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2001 Kluwer Academic Publishers
Previous article Next article
feedback
Top