Abstract
The melting behavior of β-SiC with diamond structure was investigated under high pressures up to about 10 GPa using a flash-heating device. The peritectic temperature, at which the SiC decomposes into two phases of carbon saturated liquid Si and solid carbon (graphite) by a peritectic reaction, increases with pressure and the formation temperature of one liquid phase (l-SiC) also tends to increase with pressure. The solubility of carbon in liquid Si reach 50% at about 10 GPa and β-SiC melts directly into l-SiC.