J-STAGE Home  >  Publications - Top  > Bibliographic Information

JSIAM Letters
Vol. 8 (2016) p. 21-24




It is well known that Strassen and Winograd algorithms can reduce the computational costs associated with dense matrix multiplications. We have already shown that they are also very effective for software-based multiple precision floating-point arithmetic environments such as the MPFR/GMP library. In this paper, we show that we can obtain the same effectiveness for double-double (DD) and quadruple-double (QD) environments supported by the QD library, and that parallelization can increase the speed of these multiple precision matrix multiplications. Finally, we demonstrate that our implemented parallelized Strassen and Winograd algorithms can increase the speed of parallelized LU decomposition.

Copyright © 2015, The Japan Society for Industrial and Applied Mathematics

Article Tools

Share this Article