Transactions of The Japanese Society of Irrigation, Drainage and Reclamation Engineering
Online ISSN : 1884-7234
Print ISSN : 0387-2335
ISSN-L : 0387-2335
Three-dimensional Analysis of Cone Penetration into the Ground
Takenobu FUJIKAWATatsuya KOUMOTO
Author information
JOURNAL FREE ACCESS

1978 Volume 1978 Issue 74 Pages 59-66,a2

Details
Abstract

In the present study, the mechanism of the penetration of a cone into the ground was investigated analytically and experimentally. The dimensions of the slip line fields around the cone and the values of the contact pressures on the cone surface were calculated by the slip-line method, assuming that the ground is a plastic-rigid body. The values of the bearing capacity factor of the cone (Ncra) were calculated using the mean values of the contact pressures and were compared with the ratios (Ic/cu) of the cone index (Ic) to the undrained shear strength of the clay (cu), which were obtained by experiments. As a result, it was established that this method of analysis is applicable to cone penetration into pure cohesive soils (φ=0). The results obtained by this investigation are summarized as follows:
1) The slip line field for a cone with rough surface (a rough cone) is larger than that of a cone with smooth surface (smooth cone). The value of the intermediate principal stress (σ2) does not affect the shape of a slip line field.
2) The distribution pattern of the contact pressure changes greatly with the value of σ2 The contact pressure increases rapidly toward the central axis of the cone when (σ23, and it increases slowly when σ2m.
3) The value of Ncra varies greatly not only with the apex angle of the cone.(2α) and the roughness of the cone surface, but also with the value of σ2. It has a peak value (minimum) at 2α =30°-40° for a smooth cone, while the value for a rough cone decreases hyperbolically with the value of 2α.In general, the value is larger for a rough cone than that for a smooth cone, and larger when σ23than when σ2m.
4) The cone penetration resistance (P) is in proportion to the square of the depth of cone penetration (h), which is measured from the tip of the cone, and expressed as, P= (π·tan2α·Ic) h2, within the range when the penetration depth is smaller than the height of the cone.
5) The speed of cone penetration (ν) does not affect the value of Ic/cu within the range of the experiments (speed range is 1.0 cm/sec.(commonly used speed in situ)-1/2, 000 cm/sec.).
6) The surface of commonly used cones can be considered rough in a considerable range of shearstrength for clays having plastic indices larger than 30 (IP≥30). The values of cu for these clays are therefore easily obtained using the values of Ic and Ncra for a rough cone.
7) The surface of commonly used cones can not be considered rough for clays having plastic indices smaller than 30 (Ip<30). In this case, it is necessary to take the adhesive characteristics of the clay into account.

Content from these authors
© The Japanese Society of Irrigation, Drainage and Rural Engineering
Previous article Next article
feedback
Top