Abstract
The relationship between the activity and community structure of microbes associated with the oxidation of ammonia in a full-scale rockwool biofilter was examined by kinetic, denaturing gradient gel electrophoresis (DGGE), and sequence analyses. The packing materials were sampled from two different depths at 3 sites. Estimated Km values were similar among depths at same sampling sites, while Vmax differed in the mid-point sample. The lower depth of this site had the highest Vmax. A correspondence analysis showed the DGGE profile of ammonia-oxidizing bacterial amoA of the lower depth of the mid-point sample to be distinguishable from the others. Banding patterns at other sites were similar among depths. Banding patterns of ammonia-oxidizing archaeal amoA of the mid-point sample were also similar among depths. The results suggested an association between the ammonia-oxidizing bacterial community’s composition and ammonium oxidation kinetics in samples. Sequence analysis indicated that the ammonia-oxidizing bacterial community mainly belonged to the Nitrosomonas europaea lineage and Nitrosospira cluster 3. The ammonia-oxidizing archaeal amoA-like sequences were related to those belonging to soil and sediment groups, including one with 84% nucleotide similarity with Nitrosopumilus maritimus.