Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Papers
Seasonal Changes in the Endosymbiotic Consortia of Aphids from the Genus Cinara
Vanesa Martínez-DíazAmparo LatorreRosario Gil
Author information

2016 Volume 31 Issue 2 Pages 137-144


Buchnera aphidicola is the primary endosymbiont of aphids with which it maintains an obligate mutualistic symbiotic relationship. Insects also maintain facultative symbiotic relationships with secondary symbionts, and Serratia symbiotica is the most common in aphids. The presence of both symbionts in aphids of the subfamily Lachninae has been widely studied by our group. We examined two closely related aphids, Cinara tujafilina and C. cedri in the present study. Even though both B. aphidicola strains have similar genome sizes and gene contents, the genomes of the two S. symbiotica strains were markedly different. The SCc strain has the smallest genome known for this species, while SCt possesses a larger genome in an intermediate stage between the facultative S. symbiotica of Acyrthosiphon pisum (SAp) and the co-obligate S. symbiotica SCc.Aphids are vulnerable to high temperatures. Previous studies indicated that S. symbiotica SAp confers resistance to heat-shock stress. In order to clarify whether S. symbiotica strains from genus Cinara also play a role in heat stress protection, we performed a quantitative determination of the consortium Buchnera/Serratia from two geographically close populations, each of which belonged to the Cinara species examined, over two years in natural environments. We found no variation in the consortium from our C. cedri population, but a positive correlation between both endosymbiont densities and average daily temperatures in the C. tujafilina population. Even though S. symbiotica SCt may retain some protective role against heat stress, this does not appear to be due to the release of protective metabolites by cell lysis.

Content from these authors
© 2016 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
Previous article Next article