Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Papers
Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts
Satoko Noda Daichi ShimizuMasahiro YukiOsamu KitadeMoriya Ohkuma
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2018 Volume 33 Issue 1 Pages 26-33

Details
Abstract

Cellulolytic flagellated protists inhabit the hindgut of termites. They are unique and essential to termites and related wood-feeding cockroaches, enabling host feeding on cellulosic matter. Protists of two genera in the family Teranymphidae (phylum Parabasalia), Eucomonympha and Teranympha, are phylogenetically closely related and harbor intracellular endosymbiotic bacteria from the genus Treponema. In order to obtain a clearer understanding of the evolutionary history of this triplex symbiotic relationship, the molecular phylogenies of the three symbiotic partners, the Teranymphidae protists, their Treponema endosymbionts, and their host termites, were inferred and compared. Strong congruence was observed in the tree topologies of all interacting partners, implying their cospeciating relationships. In contrast, the coevolutionary relationship between the Eucomonympha protists and their endosymbionts was more complex, and evidence of incongruence against cospeciating relationships suggested frequent host switches of the endosymbionts, possibly because multiple Eucomonympha species are present in the same gut community. Similarities in the 16S rRNA and gyrB gene sequences of the endosymbionts were higher among Teranympha spp. (>99.25% and >97.2%, respectively), whereas those between Teranympha and Eucomonympha were lower (<97.1% and <91.9%, respectively). In addition, the endosymbionts of Teranympha spp. formed a phylogenetic clade distinct from those of Eucomonympha spp. Therefore, the endosymbiont species of Teranympha spp., designated here as “Candidatus Treponema teratonymphae”, needs to be classified as a species distinct from the endosymbiont species of Eucomonympha spp.

Content from these authors
© 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
Previous article Next article
feedback
Top