Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Screening and Assessment of Potential Plant Growth-promoting Bacteria Associated with Allium cepa Linn.
Brian Estuardo SamayoaFo-Ting ShenWei-An LaiWen-Ching Chen
Author information

2020 Volume 35 Issue 2 Article ID: ME19147


Plant growth-promoting bacteria (PGPB) are beneficial microbes that increase plant growth and yield. However, limited information is currently available on PGPB in onion (Allium cepa Linn.). The aims of the present study were to isolate and identify PGPB in onion and examine the effects of isolated PGPB on germination and growth during the vegetative stage in onion, pak choy (Brassica chinensis), and sweet pepper (Capsicum annuum). Twenty-three strains of PGPB were isolated from the roots, bulbs, and rhizosphere soil of onion. All isolated bacterial strains showed one or more PGP traits, including indole acetic acid production, phosphate solubilization ability, and 1-aminocyclopropane-1-carboxylate deaminase and nitrogenase activities; most of these traits were derived from Bacillus sp., Microbacterium sp., and Pseudomonas sp. Eight bacteria that exhibited strong abilities to produce indole acetic acid were selected for a Petri dish trial, soil pot test, and vermiculate pot test. The Petri dish trial showed that strains ORE8 and ORTB2 simultaneously increased radicle and hypocotyl lengths in onion, but inhibited growth in sweet pepper after 7 d. The soil pot experiment on onion revealed that strains ORE5, ORE8, and ORTB2 strongly promoted growth during the vegetative stage with only a half dose of chemical fertilizer. The present results indicate that ORE8 (Bacillus megaterium) and ORTB2 (Pantoea sp.) are the most promising biofertilizers of onion and may simultaneously inhibit the seedling growth of other plants.

Content from these authors
© 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
Previous article Next article