Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Isolation and Identification of Phosphate-solubilizing Bacteria in the Rhizosphere of Robinia pseudoacacia on the Loess Plateau and Verification of Phosphate Solubilization Capacity
Wenrui ZhangYuhao ZhouJingru JiaYinjun LuHaoqiang Zhang
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 39 Issue 3 Article ID: ME24001

Details
Abstract

The Loess Plateau is one of the key areas for soil and water erosion control in China. Planting vegetation, such as Robinia pseudoacacia, is one of the mainstream methods to prevent soil and water erosion. However, the combination of abundant calcium ions and phosphate in the soil of the Loess Plateau limits the phosphorus nutrition of plants. In the present study, soil samples were collected under the R. pseudoacacia forest, from which two PSB strains with efficient phosphate solubilization capacities, named PSB2 and PSB7, were isolated and screened. The dissolved phosphate concentrations of their culture media were 9.68-fold and 11.61-fold higher, respectively, than that of the control group. After identification, PSB2 was classified as Pseudomonas and PSB7 as Inquilinus. This is the first time that Inquilinus has been isolated as a PSB from calcareous soil in the Loess Plateau. We then investigated the effects of different growth conditions on their phosphate solubilization capacities. Both strains effectively utilized glucose and ammonium nitrogen while maintaining high phosphate solubilization efficiency. In addition, PSB2 preferred to survive under neutral conditions and PSB7 under acidic conditions. Pot experiments indicated that the inoculation with PSB7 significantly increased the phosphorus content in the roots of R. pseudoacacia. These results imply the potential of this PSB as a phosphorus biofertilizer for R. pseudoacacia, which may be beneficial for soil and water management on the Loess Plateau.

Content from these authors
© 2024 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top