Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311

This article has now been updated. Please use the final version.

Electrochemical Characterization of a Novel Exoelectrogenic Bacterium Strain SCS5, Isolated from a Mediator-Less Microbial Fuel Cell and Phylogenetically Related to Aeromonas jandaei
Subed Chandra Dev SharmaCuijie FengJiangwei LiAnyi HuHan WangDan QinChang-Ping Yu
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: ME15185

Details
Abstract

A facultative anaerobic bacterium, designated as strain SCS5, was isolated from the anodic biofilm of a mediator-less microbial fuel cell using acetate as the electron donor and α-FeOOH as the electron acceptor. The isolate was Gram-negative, motile, and shaped as short rods (0.9–1.3 μm in length and 0.4–0.5 μm in width). A phylogenetic analysis of the 16S rRNA, gyrB, and rpoD genes suggested that strain SCS5 belonged to the Aeromonas genus in the Aeromonadaceae family and exhibited the highest 16S rRNA gene sequence similarity (99.45%) with Aeromonas jandaei ATCC 49568. However, phenotypic, cellular fatty acid profile, and DNA G+C content analyses revealed that there were some distinctions between strain SCS5 and the type strain A. jandaei ATCC 49568. The optimum growth temperature, pH, and NaCl (%) for strain SCS5 were 35°C, 7.0, and 0.5% respectively. The DNA G+C content of strain SCS5 was 59.18%. The isolate SCS5 was capable of reducing insoluble iron oxide (α-FeOOH) and transferring electrons to extracellular material (the carbon electrode). The electrochemical activity of strain SCS5 was corroborated by cyclic voltammetry and a Raman spectroscopic analysis. The cyclic voltammogram of strain SCS5 revealed two pairs of oxidation-reduction peaks under anaerobic and aerobic conditions. In contrast, no redox pair was observed for A. jandaei ATCC 49568. Thus, isolated strain SCS5 is a novel exoelectrogenic bacterium phylogenetically related to A. jandaei, but shows distinct electrochemical activity from its close relative A. jandaei ATCC 49568.

Content from these authors
© 2016 Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant and Microbe Interactions
feedback
Top