JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Optimal Design
Fit Effect of Motorcycle Helmet
—A Finite Element Modeling
Li-Tung CHANGChih-Han CHANGGuan-Liang CHANG
Author information
JOURNALS FREE ACCESS

2001 Volume 44 Issue 1 Pages 185-192

Details
Abstract

Optimized assessment of the adequacy of fit conditions between a motorcycle helmet and head size in relation to prevention of head injury remains unclear and is complicated by wide variations in the size and shape characteristics of helmet and wearer’s heads. A finite element model (LS-DYNA3D) based on realistic geometric features of a motorcycle helmet was established to simulate the standard shock absorption test for evaluating the dynamic response and fit effects of a helmet. The model was used to simulate crown, rear and side sites impacts of the helmet. The peak acceleration and Head Injury Criterion (HIC) were employed to assess the protective performance of the helmet against head injuries. The results show that this helmet model had various dynamic responses at different impact sites due to its geometric shape, but that the impact-absorbing capability did not vary markedly within these sites. The fit conditions between the headform and the helmet dramatically affected the assessment of the impact-absorbing capability of the helmet in the standard shock absorption test. However, for a motorcyclist, the helmet fit would have only minor influence on the protection against head injuries. This observation suggests that a better fitting helmet with stable fixation should provide more protection against head injury.

Information related to the author
© 2001 by The Japan Society of Mechanical Engineers
Previous article
feedback
Top