JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Computational Mechanics
Thermal Shock Analysis of Functionally Graded Materials by Micromechanical Model
Sei UEDA
Author information
JOURNAL FREE ACCESS

2002 Volume 45 Issue 2 Pages 138-145

Details
Abstract
The transient thermoelastic behavior of the functionally graded plate due to a thermal shock with temperature dependent properties is studied in this paper. The development of a micromechanical model for the functionally graded materials is presented and its application to thermoelastic analysis is discussed for the case of the W-Cu functionally graded material for the International Thermonuclear Experimental Reactor divertor plate. The divertor plate is made of a graded layer bonded between a homogeneous substrate and a homogeneous coating, and it is subjected to a cycle of heating and cooling on the coating surface of the material. The thermal and elastic properties of the material are dependent on the temperature and the position. Numerical calculations are carried out, and the results for the transient temperature and thermal stress distributions are displayed graphically.
Content from these authors
© 2002 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top