Abstract
By computer simulation, we estimated macroscopic elastic moduli of sintered equal-sized spherical particles. The simulation is composed of sequential accumulation of spheres and structural analysis of a “random network of 6-degree-freedom springs”, which is a mechanical model of “sintered particles”. From the examination of statistical characteristics of the random packings of spheres, we discovered that their packing structure is affected by gravity; more precisely, line segments connecting the centers of spheres in contact lie more frequently around the direction of 45° from the vertical (gravity) line, although they are uniformly distributed about the vertical line. This non-uniform zenithal frequency-distribution of segments makes, in turn, the sintered aggregates transversely isotropic in elasticity: Young's modulus in the vertical direction is roughly 17% larger than that in the horizontal direction. Our additional experiments using sintered glass-beads saturated with water support the simulated anisotropy.