JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method
Dianfeng LUTadashi OHYOSHIKimihisa MIURA
Author information

1997 Volume 40 Issue 4 Pages 382-388


One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.

Information related to the author
© The Japan Society of Mechanical Engineers
Previous article Next article