JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Molecular Dynamics Simulations of Atomic Scale Indentation and Cutting Process with Atomic Force Microscope
Yoshitada ISONOTakeshi TANAKA
Author information

1999 Volume 42 Issue 2 Pages 158-166


This paper describes the effect of the material used for a tool on atomic scale indentation and cutting mechanisms of metal workpieces, by means of molecular dynamics simulations. The interatomic force between the tool and workpiece is assumed to be a two-body interatomic potential using parameters based on the ab-initio molecular orbital calculation for a(Cr, Ni)-(C, Si)6H9 atom cluster. Molecular dynamics simulated the atomic scale indentation and cutting process of the chromium and nickel workpieces using the diamond, silicon and diamond-like carbon(DLC) tools. The diamond and DLC tools formed the indentation mark. Young's modulus of the chromium and nickel in indentation simulations was larger than that in experiments. This was qualitatively explained by the effect of the surface energy for the workpiece on the elastic modulus. The machinability of the chromium and nickel with the diamond tool was better than that of the silicon tool in atomic scale cutting simulations. The depth of the cut for the workpieces in nano scale cutting experiments with AFM, was similar to that in atomic scale cutting by molecular dynamics simulations.

Information related to the author
© The Japan Society of Mechanical Engineers
Previous article Next article