JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Heat Engine
Multidimensional Simulation of NO and Soot from D.I. Diesel Engines with Fuel Injection Rate Shaping
Koji YAMANEYuzuru SHIMAMOTO
Author information
JOURNAL FREE ACCESS

2001 Volume 44 Issue 1 Pages 148-157

Details
Abstract
The multidimensional engine simulation code, FREC-3D(CI), has been used to elucidate the effects of injection rate and split injection on diesel combustion, NO, and soot emissions. The combustion submodel has been updated, including the ignition submodel previously based on a one-step global mechanism. In-cylinder NO and soot formations were predicted by a Zeldovich mechanism with a partial equilibrium assumption and Morel’s soot formation with an oxidation submodel, respectively. In result, computations give good agreement between measured and predicted trends of in-cylinder pressure, and rate of heat release, and a trade-off relationship between NO and soot emissions at pilot injection with high pressure injection. Computations also show that a high turbulence kinetic energy caused by a higher initial combustion is retained at the late combustion stage after fuel injection, and promotes the soot oxidation process. Predictions made with split injection suggest that a combination of high pressure injection in conjunction with a short period in second pulse is effective to reduce soot emission.
Content from these authors
© 2001 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top