JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Multiphase Flow
Fluid Force Acting on a Particle Falling toward a Wall
Syusaku HARADAToshitsugu TANAKAYutaka TSUJI
Author information

2001 Volume 44 Issue 4 Pages 520-525


A direct simulation of the falling motion of an immersed solid particle toward a wall is performed to investigate the mechanics of hydrodynamic collision of particles. The time-dependent boundary-fitted coordinate system is applied to the calculation of fluid flow around solid bodies. The fluid force acting on the particle is calculated by integrating the surface stress without any models. The obtained particle motion is compared with the corresponding experiment and theoretical analysis. The results of the numerical simulation, the experiment and the analysis using theoretical models agree quantitatively with respect to the falling motion of the particle. When the particle falls toward the wall, fluid force due to the squeeze of fluid in the gap is increased and prevents the particle from approaching the wall. As a result, the particle is decelerated and the fluid force caused by the unsteady motion of the particle is significantly increased. The numerical results reveal that the total fluid force acting on the particle can be explained by the sum of steady and unsteady fluid forces.

Information related to the author
© 2001 by The Japan Society of Mechanical Engineers
Previous article Next article