2003 Volume 46 Issue 3 Pages 356-365
Three-dimensional vortical flow structures and velocity fluctuation near the rotor tip in an axial flow fan having two different tip clearances have been investigated by experimental analysis using a rotating hot wire probe and a numerical simulation. It is found that a tip leakage vortex is observed in the blade passage, which has a major role near the rotor tip. The tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction, and forms a local recirculation region resulting from a vortex breakdown inside the blade passage. The recirculation region is enlarged by increasing the tip clearance. The larger recirculation region induces the acceleration of the through flow, thus resulting in the increase of the broadband noise. High velocity fluctuation is observed at the interference region between the tip leakage vortex and the through flow in the flow field where the tip leakage vortex is tightly rolled up without its breakdown. Near the casing wall, a discrete frequency is formed between tip leakage vortex core and rotor trailing edge.
JSME international journal. Ser. 1, Solid mechanics, strength of materials
JSME international journal. Ser. A, Mechanics and material engineering
JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry
JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing
JSME International Journal Series A Solid Mechanics and Material Engineering