JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
PAPERS
Combustion Simulation Using the Lattice Boltzmann Method
Kazuhiro YAMAMOTOXiaoyi HEGary D. DOOLEN
Author information
JOURNAL FREE ACCESS

2004 Volume 47 Issue 2 Pages 403-409

Details
Abstract

Even though laser diagnostics have significantly improved and can obtain an instantaneous 2D flame image of the velocity field, it is still difficult to obtain data such as scalar flux or reaction rates experimentally. It is also essential to understand 3D flame structures in turbulent combustion. Chemically non-reacting turbulent flows are complex and chemical reactions make the problem more complicated. Due to practical limitations of computational costs, conventional numerical methods are very expensive for carrying out 3D numerical simulations at high Reynolds numbers with detailed chemical reactions. In this study, we have used the lattice Boltzmann method (LBM) to simulate a combustion field. The LBM is an efficient alternative for the numerical simulation of this type of flow. To confirm the validity of the LBM, a flame in simple flow geometry is simulated and the laminar burning velocity is obtained. Both 2D and 3D simulations have been completed. A jet flame has been also simulated to demonstrate the LBM capability of simulating unsteady flames with vortices. The scheme with detailed chemistry has been tested for simulation of a counter-flow flame.

Content from these authors
© 2004 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top