JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
PAPERS
Numerical Simulation of Molten Metal Flow Produced by Induction MHD Pump Using Rotating Twisted Magnetic Field
Tsutomu ANDOKazuyuki UENOKeisuke SAWADA
Author information
JOURNAL FREE ACCESS

2005 Volume 48 Issue 3 Pages 508-516

Details
Abstract

Numerical simulation at the same condition as an experiment is carried out under the magnetic Stokes approximation for small shielding parameter. Results of the simulation compensate for the information of molten metal flow that we could not directly obtain in the experiment. In this paper, we study the molten metal flow at a starting condition and quasi-steady state. Besides, the energy conversion in the MHD pump is discussed. The simulation result shows that the proposed MHD pump causes the spiral induced current in a molten gallium and produces an axial flow with swirl. At quasi-steady state, it is confirmed that the centrifugal force by the excessive swirl flow produces high pressure at a duct wall and low pressure around the central axis. Since the excessive swirl flow results in large viscous dissipation, the mechanical power output of the pump uses only about 1% of the mechanical energy production in the molten gallium.

Content from these authors
© 2005 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top