JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
PAPERS
Aspect-Ratio and Reynolds-Number Effects on Short-Span Cross-Flow Impellers without Casings
Jiro FUNAKINobuyuki KIMATAMotohide HISADAKatsuya HIRATA
Author information
JOURNAL FREE ACCESS

2006 Volume 49 Issue 4 Pages 1197-1205

Details
Abstract
The purpose of this experimental research is to clarify both the aspect-ratio effect and the Reynolds-number effect, especially for the flow of cross-flow impellers with shorter axes. Particle-image-velocimetry (PIV) technique and a hot-wire anemometer are used for measurements of flow velocity. The impeller rotates without any casings. The authors study two kinds of the impellers, that is, one with forward-cambered blades and the other with radial-flat blades. As a result, observing eccentric-vortex revolution by using hot-wire measurements and flow visualisations, the flow can be classified into three modes. According to this classification, the authors show flow-regime maps for both impellers. Using PIV results, the authors define outflow rate Q from the impeller. Outflow-rate coefficient CQ is independent of the Reynolds number for both impellers. For the radial-flat-blade impeller, CQ is not affected by aspect ratio L/D2. But, for the forward-cambered-blade impeller, CQ increases with L/D2.
Content from these authors
© 2006 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top