JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Formation of Turbulent Eddies in Jet Diffusion Flames
Makoto IKEGAMIMasahiro SHIOJIHiroshi KAWANABEKoji YAMANE
Author information
JOURNAL FREE ACCESS

1996 Volume 39 Issue 2 Pages 433-439

Details
Abstract
The transition from laminar to turbulent mode of an ethylene jet flame was investigated using the two-dimensional instantaneous photography of turbulent eddies by a laser-light sheeting method. Observations were made of the eddies around the break point in the fuel flow and the flame. The results show that in the laminar region the fuel flow is curved due to instability in the shear layer, whereas the outer soot layer has little curvature because of the high viscosity in the hot layer. In the transient region, eddies generated in the fuel flow deform the outer soot layer. Numerical calculations were performed to predict fluid motions due to interaction between density and pressure gradients in the flame boundary. The results show that the pressure gradient in a medium of varying density generates the vorticity along the flame. Deformation and stretching of the flame boundary take place once the vorticity becomes stronger than the dissipation due to viscosity.
Content from these authors
© The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top