JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Radiative Heat Transfer in Silicon Floating Zone Furnace with Specular Reflection on Concave Surfaces
Zhixiong GUOShigenao MARUYAMAShinji TOGAWA
Author information
JOURNALS FREE ACCESS

1998 Volume 41 Issue 4 Pages 888-894

Details
Abstract

A numerical study of radiative heat transfer in silicon floating zone crystal growth furnace with the needle-eye technique has been carried out. Both diffuse and specular reflections are considered on the concave surface of the silicon melt. The radiation element method is employed to solve the radiative heat transfer, in which the ray tracing method is adopted to calculate the view factors among curved diffuse and specular surfaces. The accuracy of the method is verified by good agreement with the analytical solution in a simple concave configuration system. The effects of view factors and the specular reflection of the surfaces of the melt, the crystal and the inductor on radiative heat transfer of a floating zone furnace are discussed. It is found that the specular reflection on the surfaces of melt and inductor tends to increase the heat flux or decrease the temperature gradient on the silicon melt surface. The view factors are changed remarkably with the variation of the concave surface shape, and consequently, affect strongly the radiative heat transfer.

Information related to the author
© The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top